Marco Beghini

and 3 more

Background: Relaxation methods determine residual stresses by measuring the deformations produced by incremental removal of a subdomain of the specimen. Measured strains at any given increment, determined by the cumulative effect of the relieved stresses, appear as an integral equation, which must be inverted to obtain residual stresses. In practice, stress distributions are discretized by a finite-dimensional basis, to transform the integral equations into a linear system of equations, which is often ill-conditioned. Objective: This article demonstrates that the problem is actually ill-posed and comes with an inherent bias-variance tradeoff. Methods: The hole drilling method is used as an example application, and the practical effects of ill-posedness are illustrated. Results: Traditional regularization of the solution by limiting the resolution of the discretization reduces solution variance (noise) at the expense of increased bias and often results in the ultimately harmful practice of taking fewer data points. A careful analysis including the alternate Tikhonov regularization approach shows that the highest number of measurements should always be taken to reduce the variance for a given regularization scheme. Unfortunately, the variability of a regularized solution cannot be used to build a valid confidence interval, since an unknown bias term is always present in the true overall error. Conclusions: The mathematical theory of ill-posed problems provides tools to manage the bias-variance tradeoff on a reasonable statistical basis, especially when the statistical properties of measurement errors are known. In the long run, physical arguments that provide constraints on the true solution would be of utmost importance, as they could regularize the problem without introducing an otherwise unknown bias. Constraining the minimum length scale to some physically meaningful value is one promising possibility.

Marco Beghini

and 3 more

An accurate estimation of the measurement error in the hole drilling method is needed to choose an appropriate level of regularization and to perform a sensitivity analysis on the stress results. Latest release of ASTM E837 standard for the hole drilling method includes a procedure aimed at estimating the standard deviation of the random error component on strain measurements, proposed by Schajer. Nevertheless, strain measurements are also affected to some extent by systematic errors which are not included in the estimation and need to be compensated. For example, an error in the rosette gage factor or in the identification of the zero-depth point systematically affects all strain measurements in a strongly correlated fashion. This paper describes a calibration bench, designed to superimpose a reference bending stress distribution on a given specimen while simultaneously performing a hole drilling measurement. Since the reference solution is known a priori and shares the measurement instrumentation, the hole geometry and the stepping process with the actual residual stress distribution, the bench provides the user with a direct validation of the obtained accuracy. In addition, strategies aimed at compensating systematic errors can be tested on the reference solution and then applied on the residual stress evaluation. Two bias correction strategies are discussed and validated on a 7075-T651 aluminum specimen. It is observed that the imperfect hole geometry and drilling alignment lead to a significant underestimation of stresses near the surface. With the proposed bench, it is shown that this effect can be corrected.