In recent years, the likelihood of wildfire occurrence has increased in many North American communities as changes in climate have led to longer, more deadly fire seasons. Â Many Americans, especially those living in Western states, have reported frequent drought and wildfire conditions, leading to an increased need for a modeling program to assess wildfire risk at a low computational cost. The research objective of this paper was to develop a machine learning model capable of producing real-time wildfire risk assessments using five geospatial datasets: Land Fire Mean Return, Annual Precipitation, Sentinel-2 Imagery, Land Cover, and Moisture Deficit & Surplus. To create the model, three separate machine learning architectures were implemented (U-Net, DeepLabV3, and the Pyramid Scene Parsing Network) and then applied to the study area of San Bernardino County, CA for the year 2020. In addition, this study demonstrated a proof of concept for further inquiry into combining artificial intelligence and geospatial datasets to create useful insights. Â