In this paper, we investigate the performance of a Hybrid Quantum Neural Network (HQNN) and a comparable classical Convolution Neural Network (CNN) for detection and classification problem using a radar. Specifically, we take a fairly complex radar time-series model derived from electromagnetic theory, namely the Martin-Mulgrew model, that is used to simulate radar returns of objects with rotating blades, such as drones. We find that when that signal-to-noise ratio (SNR) is high, CNN outperforms the HQNN for detection and classification. However, in the low SNR regime (which is of greatest interest in practice) the performance of HQNN is found to be superior to that of the CNN of a similar architecture.