Menghao Li

and 8 more

Lunar exploration has attracted considerable attention, with the lunar poles emerging as the next exploration hot spot for the cold trapping of volatiles in the permanently shadowed regions (PSRs) at these poles. Remote sensing via the satellite’s optical load is one of the most important ways to get the scientific data of PSRs. However, the illumination conditions at the lunar poles are quite different from the low latitude areas and how to get appropriate optical signal remains challenging. Thus, simulation of the optical remote sensing process, which provides reference for the choice of satellites’ imaging parameters to ensure the implementation of lunar exploration project, is of great value. In this paper, an optical imaging chain modeling for the PSRs at the lunar south pole, which includes lunar three dimensional topography, observing satellite’s orbit, instrument’s parameters and other environmental parameters, has been built. To demonstrate the physical accuracy, some PSRs’ observations acquired by narrow angle cameras (NACs) equipped on the Lunar Reconnaissance Orbiter (LRO) are compared with the corresponding images simulated by the proposed imaging chain model. The digital value’s difference between the simulated images and real captured images is generally less than 50 for 12-bit images ranging from 0 to 4095, indicating a good fit considering the uncertainty of soil’s absolute reflectance and the noise in the real captured images. In addition, the impact of the imaging chain’s parameters is revealed with the proposed algorithm. The simulation method will provide reference and assist future optical imaging of PSRs.