Yuhao Pan

and 5 more

Unmanned Aerial Vehicles (UAVs), due to their low cost and high flexibility, have been widely used in various scenarios to enhance network performance. However, the optimization of UAV trajectories in unknown areas or areas without sufficient prior information, still faces challenges related to poor planning performance and low distributed execution. These challenges arise when UAVs rely solely on their own observation information and the information from other UAVs within their communicable range, without access to global information. To address these challenges, this paper proposes the Qedgix framework, which combines graph neural networks (GNNs) and the QMIX algorithm to achieve distributed optimization of the Age of Information (AoI) for users in unknown scenarios. The framework utilizes GNNs to extract information from UAVs, users within the observable range, and other UAVs within the communicable range, thereby enabling effective UAV trajectory planning. Due to the discretization and temporal features of AoI indicators, the Qedgix framework employs QMIX to optimize distributed partially observable Markov decision processes (Dec-POMDP) based on centralized training and distributed execution (CTDE) with respect to mean AoI values of users. By modeling the UAV network optimization problem in terms of AoI and applying the Kolmogorov-Arnold representation theorem, the Qedgix framework achieves efficient neural network training through parameter sharing based on permutation invariance. Simulation results demonstrate that the proposed algorithm significantly improves convergence speed while reducing the mean AoI values of users. The code is available at https://github.com/UNIC-Lab/Qedgix.

Xiucheng Wang

and 6 more

Radio map (RM) is a promising technology that can obtain pathloss based on only location, which is significant for 6G network applications to reduce the communication costs for pathloss estimation. However, the construction of RM in traditional is either computationally intensive or depends on costly sampling-based pathloss measurements. Although the neural network (NN)-based method can efficiently construct the RM without sampling, its performance is still suboptimal. This is primarily due to the misalignment between the generative characteristics of the RM construction problem and the discrimination modeling exploited by existing NN-based methods. Thus, to enhance RM construction performance, in this paper, the sampling-free RM construction is modeled as a conditional generative problem, where a denoised diffusion-based method, named RadioDiff, is proposed to achieve high-quality RM construction. In addition, to enhance the diffusion model's capability of extracting features from dynamic environments, an attention U-Net with an adaptive fast Fourier transform module is employed as the backbone network to improve the dynamic environmental features extracting capability. Meanwhile, the decoupled diffusion model is utilized to further enhance the construction performance of RMs. Moreover, a comprehensive theoretical analysis of why the RM construction is a generative problem is provided for the first time, from both perspectives of data features and NN training methods. Experimental results show that the proposed RadioDiff achieves state-of-the-art performance in all three metrics of accuracy, structural similarity, and peak signal-to-noise ratio. The code is available at https://github.com/UNIC-Lab/RadioDiff.