Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

loading page

A Novel Nature-inspired Multi-objective Particle Swarm Optimization Algorithm
  • +3
  • Ahlem Aboud,
  • Nizar Rokbani,
  • Seyedali Mirjalili,
  • Pavel Kromer,
  • Amir Hussain,
  • Adel M. Alimi
Ahlem Aboud
Universite de Sousse Institut Superieur d'Informatique et des Technologies de Communication de Hammam Sousse
Author Profile
Nizar Rokbani
Ecole Nationale d'Ingenieurs de Sfax
Author Profile
Seyedali Mirjalili
Torrens University Australia
Author Profile
Pavel Kromer
Vysoka skola banska-Technicka univerzita Ostrava
Author Profile
Amir Hussain
Edinburgh Napier University

Corresponding Author:[email protected]

Author Profile
Adel M. Alimi
Ecole Nationale d'Ingenieurs de Sfax
Author Profile

Abstract

This paper introduces a novel Nature-inspired Multi-Objective Particle Swarm Optimization algorithm for Multifactorial Problems, called MOPSO-mfact. The MOPSO-mfact algorithm operates in two processing steps: an initial pre-search in a unified search space, followed using a dominance operator to identify the best skill factor. Subsequently, individuals with identical skill factors are grouped into sub-swarms for multitasking optimization, avoiding random mating probabilities. MOPSO-mfact was evaluated using 36 Multifactorial (ETMOF) benchmark suite. Comparative analysis using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics, along with the Mean Standard Score (MSS), determined the best multitasking approach. Parameter optimization was achieved via sensitivity analysis with the Taguchi method. MOPSO-mfact demonstrated promising results, achieving a strong MSS for 28 ETMOF problems and solving 33 out of 36 problems based on MIGD metrics.