AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at
[email protected]
in case you face any issues.
Jay Lu
Public Documents
1
Adaptive Safe Reinforcement Learning-Enabled Optimization of Battery Fast-Charging Pr...
Myisha A. Chowdhury
and 2 more
August 29, 2024
Optimizing charging protocols is critical for reducing battery charging time and decelerating battery degradation in applications such as electric vehicles. Recently, reinforcement learning (RL) methods have been adopted for such purposes. However, RL-based methods may not ensure system (safety) constraints, which can cause irreversible damages to batteries and reduce their lifetime. To this end, this work proposes an adaptive and safe RL framework to optimize fast charging strategies while respecting safety constraints with a high probability. In our method, any unsafe action that the RL agent decides will be projected into a safety region by solving a constrained optimization problem. The safety region is constructed using adaptive Gaussian process (GP) models, consisting of static and dynamic GPs, that learn from online experience to adaptively account for any changes in battery dynamics. Simulation results show that our method can charge the batteries rapidly with constraint satisfaction under varying operating conditions.