Roland Froetschl

and 14 more

Gene expression biomarkers have the potential to identify genotoxic and nongenotoxic carcinogens, providing opportunities for integrated testing and reducing animal use. In August 2022, an International Workshops on Genotoxicity Testing (IWGT) workshop was held to critically review current methods to identify genotoxicants using transcriptomic profiling. Here, we summarize the workgroup’s findings on the state of the science regarding the use of transcriptomic biomarkers to identify genotoxic chemicals in vitro and in vivo. A total of 1341 papers were examined to identify the biomarkers that show the most promise for identifying genotoxicants. This revealed two independently derived in vivo biomarkers and three in vitro biomarkers that, when used in conjunction with standard computational techniques, can identify genotoxic chemicals in vivo (rat or mouse liver) or in human cells in culture using different gene expression profiling platforms, with predictive accuracies of ≥ 92%. These biomarkers have been validated to differing degrees, but typically show high reproducibility across transcriptomic platforms and model systems. They offer several advantages for applications in different contexts of use in genotoxicity testing including: early signal detection, moderate to high-throughput screening capacity, adaptability to different cell types and tissues, and insights on mechanistic information on DNA-damage response. Workshop participants agreed on consensus statements to advance the regulatory adoption of transcriptomic biomarkers for genotoxicity. The participants agreed that transcriptomic biomarkers have the potential to be used in conjunction with other biomarkers in integrated test strategies in vitro and using short-term rodent exposures to identify genotoxic and nongenotoxic chemicals that may……………….