Previously, our lab developed high molecular weight (MW) tense (T) state glutaraldehyde polymerized bovine hemoglobins (PolybHbs) that exhibited reduced vasoactivity in several small animal models. In this work, we prepared PolybHb in the T- and relaxed (R) quaternary state with ultrahigh MW (> 500 kDa) with varying cross-link densities and investigated the effect of MW on key biophysical properties (i.e., O2 affinity, cooperativity coefficient, hydrodynamic diameter, polydispersity, polymer composition, viscosity, gaseous ligand-binding kinetics, autoxidation, and haptoglobin-binding kinetics). To further optimize current PolybHb synthesis and purification protocols, we performed a comprehensive meta-data analysis to evaluate correlations between procedural parameters (i.e. cross-linker:bovine Hb (bHb) molar ratio, gas/liquid exchange time, temperature during dithionite addition, and number of diafiltration cycles) and the biophysical properties of both T-state and R-state PolybHbs. Our results showed that, the duration of the fast-step autoxidation phase of R-state PolybHb increased with decreasing glutaraldehyde:bHb molar ratio. Additionally, T-state PolybHb exhibited significantly higher biomolecular rate constants for binding to haptoglobin and unimoleular O2 offloading rate constants compared to R-state PolybHb. The methemoglobin (metHb) level in the final product was insensitive to the molar ratio of glutaraldehyde to bHb for all PolybHb. During tangential flow filtration processing of the final product, 14 diafiltration cycles was found to yield the lowest metHb level.