Lucía Cappelletti

and 4 more

Important progress has been made in recent years in characterizing surface soil moisture (SSM) at regional scales, through remote sensing estimates and the implementation of new in situ networks. Each of these sources of information has intrinsic features, such as the dynamic range of the SSM and the temporal frequency of acquisition. Another relevant factor is the period of data availability. Improving the knowledge of the limitations and biases of these features is crucial to increase the potential and the consistency of data sources validations. As a case of study we considered an agricultural area in the Argentinean Pampas, characterized by a sub-humid climate with a marked seasonal dynamic. It also holds a synchronized cropping rhythm and is subject to flooding and waterlogging that can last from days to months. The features mentioned above and considering that the region is almost devoid of irrigation, offer a natural laboratory that is distinguished by a wide dynamic range of SSM conditions. In this context, we analyze and expose different sources of SSM data gaps over long periods of time, using information from in situ stations and from the SMOS and SMAP satellite systems, during 2015-2019. We found SMAP data gaps resulting from the filtering of high SSM signals that are not spurious but typical for this flood-prone region. Reports from national institutions and comparison with other data sources allowed us to identify that high soil water content in the same period in which the data gaps occurred. In a different way, the SMOS register has a low-frequency range of data due to radio frequency interference over the study area. This data gap occurs during a long-anomalously wet period and it is relevant to take it into account when analyzing SMOS data for the full period. Our study shows the importance of using multiple sources of information and the relevance of examining the availability of data.

Esteban Jobbágy

and 6 more

Our understanding of the mechanisms routing precipitation inputs to evapotranspiration and streamflow in catchments is still very fragmented, particularly in the case of saturated flows. Here we explore five mechanisms by which plants and streams compete with each other for water, based on multiple scales of observations in a flat semiarid sedimentary catchment of central Argentina subject to abrupt hydrological transformations. Since the 80s, the “El Morro” catchment (1334 km2, -33.64°, -65.36°) experienced a fast expansion of crops over native forests and grasslands, rapid water table level rises (~0.3 m y-1), spontaneous expansion of wetlands and permanent streams by groundwater sapping. Based on episodic and continuous groundwater level, stream flow, and remote sensing data we show that plants not only take away water from streams by drying the unsaturated zone (mechanism 1), but by tapping the saturated zone in the expanding waterlogged environments (mechanism 2) and in the upland environments that remain uncultivated and display increasing tree cover (mechanism 3). Conversely, streams take away water from plants through pulsed bed-deepening and water table depression (mechanism 4), and riparian and wetland zones burying with fresh sediments (mechanism 5). While earlier work established widespread support for mechanisms 1 preventing stream formation, diurnal and seasonal fluctuations of water table levels and base streamflow records in this study proved the importance of mechanisms 2 and 3 under the current high-water table conditions. These data together with remotely-sensed greenness showed a growing but localized relevance of mechanism 4 and 5 as the stream network developed. The distinction of recharge- vs. topography-controlled groundwater systems is useful to organize the interplay of these concurrent mechanisms. Findings point to the unsaturated-saturated contact zone as a crucial and dynamic hub for water partition and for ecological, geomorphological, and hydrological knowledge integration.

Esteban Jobbágy

and 6 more

Our understanding of the mechanisms routing precipitation inputs to evapotranspiration and streamflow in catchments is still very fragmented, particularly in the case of saturated flows. Here we explore five mechanisms by which plants and streams compete with each other for water, based on multiple scales of observations in a flat semiarid sedimentary catchment of central Argentina subject to abrupt hydrological transformations. Since the 80s, the “El Morro” catchment (1334 km2, -33.64°, -65.36°) experienced a fast expansion of crops over native forests and grasslands, rapid water table level rises (~0.3 m y-1), spontaneous expansion of wetlands and permanent streams by groundwater sapping. Based on episodic and continuous groundwater level, stream flow, and remote sensing data we show that plants not only take away water from streams by drying the unsaturated zone (mechanism 1), but by tapping the saturated zone in the expanding waterlogged environments (mechanism 2) and in the upland environments that remain uncultivated and display increasing tree cover (mechanism 3). Conversely, streams take away water from plants through pulsed bed-deepening and water table depression (mechanism 4), and riparian and wetland zones burying with fresh sediments (mechanism 5). While earlier work established widespread support for mechanisms 1 preventing stream formation, diurnal and seasonal fluctuations of water table levels and base streamflow records in this study proved the importance of mechanisms 2 and 3 under the current high-water table conditions. These data together with remotely-sensed greenness showed a growing but localized relevance of mechanism 4 and 5 as the stream network developed. The distinction of recharge- vs. topography-controlled groundwater systems is useful to organize the interplay of these concurrent mechanisms. Findings point to the unsaturated-saturated contact zone as a crucial and dynamic hub for water partition and for ecological, geomorphological, and hydrological knowledge integration.