In this study, data from MODIS land surface temperature product level 3 (MOD11A2) were used to investigate the spatiotemporal variation of Eurasian lakes water surface temperature (LWST) from 2001 to 2015, and to examine the most influencing factors of that variation. The temperature of most lakes in the dry climate zone and in the equatorial climatic zone varied from 17 to 31°C and from 23 to 27 °C, respectively. LWSTs in the warm temperate and cold climatic zones were in the range of 20 to 27 °C and -0.6 and 17 °C, respectively. The average daytime LWST in the polar climate zone was -0.71°C in the summer. Lakes in high latitude and in the Tibetan Plateau displayed low LWST, ranging from –11°C to 26°C during the nighttime. Large spatial variations of diurnal temperature difference (DTD) was observed in lakes across Eurasia. However, variations in DTDs were small in lakes located in high latitude and in tropical rainforest regions. The shallow lakes showed a rapid response of LWST to solar and atmospheric forcing, while in the large and deep lakes, that response was sluggish. Results of this study demonstrated the applicability of remote sensing and MODIS LST products to capture the spatial-temporal variability of LWST across continental scales, in particular for the vast wilderness areas and protected environment in high latitude regions of the world. The approach can be used in future studies examining processes and factors controlling large scale variability of LWST.