Dibutyl phthalate (DBP) is an environmental pollutant that can threaten human health. The strain Arthrobacter sp. ZJUTW, isolated from the sludge of river of Hangzhou city, can efficiently degrade DBP. Its genomic and transcriptomic differences when cultivated with DBP and with glucose revealed specific DBP metabolic pathways in the ZJUTW strain. The degrading gene clusters distribute separately on a circular chromosome and a plasmid pQL1. Genes related to the initial steps of DBP degradation from DBP to phthalic acid (PA), the pehA gene and pht gene cluster, are located on the plasmid pQL1. While pca gene cluster related to the transforming of protocatechuic acid (PCA) to acetyl-CoA, is located on the chromosome. After homologous alignment analysis with the reported gene clusters, we found that there were a series of double copies of homologous genes in pht and pca gene clusters that contribute to the efficient degradation of DBP by ZJUTW. In addition, transcriptomic analysis showed a synergistic effect between pht and pca clusters, which also favor ZJUTW allowing it to efficiently degrade DBP. Combined genomic and transcriptomic analyses affords the complete DBP metabolic pathway in Arthrobacter sp. ZJUTW that is different from that of reported other Arthrobacter strains. After necessary modification based on its metabolic characteristics, Arthrobacter sp. ZJUTW or its mutants might represent promising candidates for use in the bioremediation of DBP pollution.