This study investigated the fretting fatigue behavior and mechanism of 35CrMoA steel of different contact stresses under diamond and square loading paths in the form of curved surface contact. The results show that multiple crack sources will initiate on the subsurface of the specimen under the combined effect of contact stress and cyclic stress. Under low contact stress, only one crack source dominates, causing the instantaneous fracture zone to be biased to the other side of the main crack source. Under high contact stress, the crack sources in both fretting zones play a dominant role, making the shape of the instantaneous fracture zone into a nearly circular shape with better symmetry; At the beginning of the fretting fatigue, cracks only propagate in the cross-section where they form. When they propagate to a certain depth, a component that propagates in the longitudinal direction will be generated.