The enemy release hypothesis (ERH) is the best-known hypothesis explaining high performance (e.g., rapid population growth) of exotic species. However, the current framing of the ERH does not explicitly link evidence of enemy release with exotic performance. This leads to uncertainty regarding the role of enemy release in biological invasions. Here we demonstrate that the effect of enemy release on exotic performance is the product of three factors: enemy impact, enemy diversity, and host adaptation. These factors are modulated by seven contexts: time since introduction, resource availability, phylogenetic relatedness of exotic and native species, host-enemy asynchronicity, number of introduction events, type of enemy, and strength of growth-defence trade-offs. ERH-focused studies frequently test different factors under different contexts, leading to inconsistent findings, which characterise current evidence for the ERH. For example, over 80% of meta-analyses fail to consider ecological contexts that can modulate study findings; we demonstrate this by re-analysing a recent ERH synthesis. Structuring the ERH around factors and contexts promotes generalisable predictions about when and where exotic species may benefit from enemy release, empowering effective management. Our mechanistic factor-context framework clearly lays out the evidence required to support the ERH, unifies many enemy-related invasion hypotheses and enhances predictive capacity.