Bacteriophage is considered an alternative to antibiotics and environmentally friendly approach to tackle antimicrobial resistance (AMR) in aquaculture. Here, we reported isolation, morphology and genomic characterizations of a newly isolated lytic bacteriophage, designated pAh6.2TG. Host range and stability of pAh6.2TG in different environmental conditions, and protective efficacy against a pathogenic multidrug-resistant (MDR) Aeromonas hydrophila in Nile tilapia were subsequently evaluated. The results showed that pAh6.2TG is a member of the family Myoviridae which has genome size of 51,780 bp, encoding 65 putative open reading frames (ORFs), and is most closely related to Aeromonas phage PVN02 (99.33% nucleotide identity). The pAh6.2TG was highly specific to A. hydrophila and infected 83.3% tested strains of MDR A. hydrophila (10 out of 12) with relative stability at pH 7 9, temperature 0 40 °C and salinity 0 40 ppt. In experimental challenge, pAh6.2TG treatments significantly improved survivability of Nile tilapia exposed to a lethal dose of the pathogenic MDR A. hydrophila, with relative percent survival (RPS) of 73.3% and 50% for phage multiplicity of infection (MOI) 1.0 and 0.1, respectively. Significant reduction of bacterial counts in rearing water at 3 h (6.7 ± 0.5 to 18.1 ± 6.98 folds) and in fish liver at 48 h post-treatment (2.7 ± 0.24 to 34.08 ± 26.4 folds) was observed in phage treatment groups while opposite pattern for bacterial counts was observed in untreated control. Interestingly, the surviving fish provoked specific antibody (IgM) against the challenged A. hydrophila. These results might explain the higher survival in phage treatment groups. In summary, the findings suggested that the lytic bacteriophage pAh6.2TG is an effective alternative to antibiotics to control MDR A. hydrophila in tilapia and possibly other freshwater fish.