Background: Epitope mapping is an increasingly important aspect of biotherapeutic and vaccine development. Recent advances in therapeutic antibody design and production has enabled candidate mAbs to be identified at a rapidly increasing rate resulting in a significant bottleneck in the characterization of ‘structural’ epitopes, that are challenging to determine using existing high throughput epitope mapping tools. Here, Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) epitope screening workflow was introduced that is well suited for accelerated characterization of epitopes with a common antigen. Main methods and major results: The method is demonstrated on set of 6 candidate mAbs targeting Pertactin (PRN). Using this approach, five of the six epitopes was unambiguously determined using two HDX mixing timepoints in 24 hours total run time, corresponding to substantial decrease in the instrument time required to map a single epitope using conventional HDX workflows. Conclusion: An accelerated HDX-MS epitope screening workflow was developed. The two-timepoint ‘screening’ workflow mapped all six mAbs and generated high confidence epitopes for five of the six mAbs assayed. The substantial improvement in the rate of data collection can advance HDX-MS for higher throughput investigations supporting the ability to evaluate a broader number of mAb candidates at an earlier stage of vaccine development.