Matthew Hardy

and 8 more

 The Central Valley of California (CVC) and Mid-Atlantic (MA) in the U.S. are both critical sites for nationwide food security (California Poultry Federation 2016, Prosser et al. 2017), and many waterfowl species annually, especially during the winter, providing feeding and roosting locations for a variety of species. Mapping waterfowl distributions, using NEXRAD, may aid in the adaptive management of important waterfowl habitat and allow various government agencies to better understand the interface between wild and domestic birds and commercial agricultural practices. We used 9 years (2014–2023) of data from the US NEXRAD network to model winter waterfowl relative abundance in the CVC and MA as a function of weather, temporal period, environmental conditions, and landcover characteristics using Boosted Regression Tree modelling. We were able to quantify the variability in effect size of 28 different covariates across space and time within two geographic regions which are critical to nationwide waterfowl management and host a high density of nationally important commercial agriculture. In general, weather, geographic (distance to features), and landcover condition (wetness index) predictors had the strongest relative effect on predicting wintering waterfowl relative abundance in both regions, while effects of land cover composition were more regionally and temporally specific. Increased daily mean temperature was a major predictor of increasing relative waterfowl abundance in both regions throughout the winter. Increasing precipitation had differing effects within regions, increasing relative waterfowl abundance in the MA, while decreasing in general within the CVC. Increasing relative waterfowl abundance in the CVC are strongly tied to the flooding of the landscape and rice availability, whereas waterfowl in the MA, where water is less limiting, are generally governed by waste grain availability and emergent wetland on the landscape. Waterfowl relative abundance in the MA was generally higher nearer to the Atlantic coast and lakes, while in the CVC they were higher nearer to lakes. Our findings promote a better understanding of spatial associations of waterfowl to landscape features and may aid in conservation and biosecurity management protocols.

Joseph Gendreau

and 2 more

As social media becomes an ever-increasing staple of everyday life and a growing percentage of people turn to community driven platforms as a primary source of information, the data created from these posts can provide a new source of information from which to better understand an event in near real-time. The 2018-2020 outbreak of virulent Newcastle Disease (vND) in Southern California is the third outbreak of vND in Southern California within a 50-year time span. These outbreaks are thought to be primarily driven by non-commercial poultry (i.e. backyard and game fowl) in the region. Here we employed a commercial “web crawling” tool between June of 2018 and July of 2020 which encompassed the majority of the outbreak in order to collect all available online mentions of virulent Newcastle Disease (vND) in relation to the outbreak. A total of 2,498 posts in English and Spanish were returned using a Boolean logic-based string search. While the number of posts was relatively small, their impact as measured by the number of visitors to the website and the number of people viewing the post (where provided) was much larger. Using views as a metric, Twitter was identified as the most significant source of comments over blogs, forums and other news sites. Posts with negative sentiment were found to have a larger audience relative to posts with a positive sentiment. In addition, posts with negative sentiment peaked in May of 2019 which preceded the formation of the anti-depopulation group Save Our Birds (SOB). As the usage and impact of social media grows, the ability to utilize tools to analyze social media may improve both response and outreach-based strategies for various disease outbreaks including vND in Southern California which has a large non-commercial poultry population.