The degree of rate control quantitatively identifies the kinetically relevant (sometimes known as rate-limiting) steps of a complex reaction network. This concept relies on derivatives which are commonly implemented numerically, e.g. with finite differences. Numerical derivatives are tedious to implement, and can be problematic, and unstable or unreliable. In this work, we demonstrate the use of automatic differentiation in the evaluation of the degree of rate control. Automatic differentiation libraries are increasingly available through modern machine learning frameworks. Compared to the finite differences, automatic differentiation provides solutions with higher accuracy with lower computational cost. Furthermore, we illustrate a hybrid local-global sensitivity analysis method, the distributed evaluation of local sensitivity analysis (DELSA), to assess the importance of kinetic parameters over an uncertain space. This method also benefits from automatic differentiation to obtain high-quality results efficiently.