ANKIT GHOSH

and 1 more

Smart grid is an essential concept in the transformation of the electricity sector into an intelligent digitalized energy network that can deliver optimal energy from the source to the consumers. Smart grids being self-sufficient systems are constructed through the integration of information, telecommunication, and advanced power technologies with the existing electricity systems. Artificial Intelligence (AI) is an important technology driver in smart grids. The application of AI techniques in smart grid is becoming more apparent because the traditional modelling optimization and control techniques have their own limitations. Machine Learning (ML) being a sub-set of AI enables intelligent decision-making and response to sudden changes in the customer energy demands, unexpected disruption of power supply, sudden variations in renewable energy output or any other catastrophic events in a smart grid. This paper presents the comparison among some of the state-of-the-art ML algorithms for predicting smart grid stability. The dataset that has been selected contains results from simulations of smart grid stability. Enhanced ML algorithms such as Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbour (KNN), Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), Stochastic Gradient Descent (SGD) classifier, XGBoost and Gradient Boosting classifiers have been implemented to forecast smart grid stability. A comparative analysis among the different ML models has been performed based on the following evaluation metrics such as accuracy, precision, recall, F1-score, AUC-ROC, and AUC-PR curves. The test results that have been obtained have been quite promising with the XGBoost classifier outperforming all the other models with an accuracy of 97.5%, recall of 98.4%, precision of 97.6%, F1-score of 97.9%, AUC-ROC of 99.8% and AUC-PR of 99.9%.

ANKIT GHOSH

and 1 more

The improvement of Artificial Intelligence (AI) and Machine Learning (ML) can help radiologists in tumor diagnostics without invasive measures. Magnetic resonance imaging (MRI) is a very useful method for diagnosis of tumors in human brain. In this paper, brain MRI images have been analyzed to detect the regions containing tumors and classify these regions into three different tumor categories: meningioma, glioma, and pituitary. This paper presents the implementation and comparison of various enhanced ML algorithms for the detection and classification of brain tumors. A brain tumor is the growth of abnormal cells in the human brain. Brain tumors can be cancerous or non-cancerous. Cancerous or malignant brain tumors can be life threatening. Hence, detection and classification of brain tumors at an early stage is extremely important. In this paper, enhanced ML algorithms have been implemented to predict the presence or the absence of brain tumors using binary classification and to predict whether a patient has brain tumor or not and if he does, detect the type of brain tumor using multi-class classification. The dataset that has been used to perform the binary classification task comprises of two types of brain MRI images with tumor and without tumor. Here nine ML algorithms namely, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbor (KNN), Naïve Bayes (NB), Decision Tree (DT) classifier, Random Forest classifier, XGBoost classifier, Stochastic Gradient Descent (SGD) classifier and Gradient Boosting classifier have been used to classify the MRI images. A comparative analysis of the ML algorithms has been performed based on a few performance metrics such as accuracy, recall, and precision, F1-score, AUC-ROC curve and AUC-PR curve. Gradient Boosting classifier has outperformed all the other algorithms with an accuracy of 92.4%, recall of 94.4%, precision of 85%, F1-score of 89.5%, AUC-ROC of 97.2% and an AUC-PR of 91.4%. To address the multi-class classification problem, four ML algorithms namely, SVM, KNN, Random Forest classifier and XGBoost classifier have been employed. In this case, the dataset that has been used consists of four types of brain MRI images with glioma tumor, meningioma tumor, and pituitary tumor and with no tumor. The performances of the ML algorithms have been compared based on accuracy, recall, precision and the F1-score. XGBoost classifier has surpassed all the other algorithms in terms of accuracy, precision, recall and F1-score. XGBoost has produced an accuracy of 90%, precision of 90%, and recall of 90% and F1-score of 90%.