loading page

Microcrystalline cellulose effects on the rheology of mixed oleogels structured with candelilla wax and saturated fat
  • +1
  • Luz Pérez-Meza,
  • Miguel Ruiz-Cabrera,
  • Juan Morales-Rueda,
  • Jaime Pérez-Martínez
Luz Pérez-Meza
UNIVERSIDAD AUTONÓMA DE SAN LUIS POTOSÍ

Corresponding Author:[email protected]

Author Profile
Miguel Ruiz-Cabrera
UNIVERSIDAD AUTONÓMA DE SAN LUIS POTOSÍ
Author Profile
Juan Morales-Rueda
viscoelabs, materials research center
Author Profile
Jaime Pérez-Martínez
UNIVERSIDAD AUTONÓMA DE SAN LUIS POTOSÍ
Author Profile

Abstract

The structuration processes of mixed oleogels produced with candelilla wax (CW, 0 or 3%), fully hydrogenated soybean oil (FH, 5-15%), and microcrystalline cellulose (MC, 0-9%) were studied to define their rheological effects. During the cooling CW crystals performed as nucleation sites for FH. The elastic modulus (G’) of oleogels with FH and 3% CW were more than two orders of magnitude higher than those produced with 0% CW. Adding MC to the oleogels increased slightly the G’. Independently of the amount of MC, oleogels structured with increasing amounts of FH and 0% CW showed the elastic properties scaling of colloidal gels. This behavior was lost by adding 3% CW, implying that in mixed FH-CW oleogels, the CW crystal network dominated the oleogel rheology. The flow point and the mechanical reversibility of oleogels and commercial butter (CB) was also determined. CB showed flow points at 44 and 59% strain and mechanical reversibility values of 29 and 35% of G’ measured in a pre-shear step. Adding MC to oleogels structured with FH and 0% CW increased their flow point (37.2%) near those of CB. This effect was not produced in mixed FH-3% CW oleogels. The mechanical recovery of oleogels produced with FH, MC, and 0% CW tend to decrease as the FH content increased. CW and MC did not show a simple concentration–effect relationship for the mechanical recovery. Nonetheless, oleogels structured with 3% CW and 10% FH and 6-9% MC showed mechanical recovery (~60%) close to that of CB.
10 Nov 2021Submitted to Journal of the American Oil Chemists' Society
10 Nov 2021Submission Checks Completed
10 Nov 2021Assigned to Editor
25 Nov 2021Reviewer(s) Assigned
21 Dec 2021Review(s) Completed, Editorial Evaluation Pending
31 Jan 2022Editorial Decision: Revise Major