You need to sign in or sign up before continuing. dismiss

Janitha Wanasundara

and 5 more

Protein from camelina seed is a valuable co-product that can be derived from the meal remaining after oil extraction. The current study describes the types and physicochemical properties of the major proteins present in camelina meal. Seed coat mucilage, which interferes with protein extraction, was removed from whole seeds by digestion with Viscozyme® and lipids were removed with hexane to obtain demucilaged/defatted meal. Protein comprised 51.3% of meal dry matter and the eight essential amino acids comprised 40.8% of total amino acids. The meal polypeptide profile showed bands originating from cruciferin (~44.1 and 51.7 kDa), napin (~14 kDa) and oil body proteins (OBP; ~15-20 kDa) resembling that of other crucifers. Cruciferins (11 isoforms) were the predominant proteins, while vicilins (6 isoforms) also were identified among the proteins soluble at pH 8.5. Among the proteins soluble at pH 3, napins (5 isoforms) comprised the majority, though late embryogenesis abundant proteins also were found. Camelina cruciferin and napin were confirmed to possess predominantly β-sheet and α-helix secondary structures, respectively. Camelina cruciferin structure was highly sensitive to changes in medium pH and underwent acid-induced denaturation at pH 3, but exhibited high thermal stability (>80°C) at neutral and alkaline pHs. The structure of camelina napins was less sensitive to pH. The major proteins associated with oil bodies were oleosins (6 isoforms). Identification and characterization of the properties of camelina meal proteins will enable strategic paths for co-product valorization.