Protein-based condensates have been proposed to accelerate biochemical reactions by enriching reactants and enzymes simultaneously. Here, we engineered those condensates into a Photo-Activated Switch in E. coli (PhASE) to regulate enzymatic reactions via tuning the spatial correlation of enzymes and substrates. In this system, scaffold proteins undergo liquid-liquid phase separation (LLPS) to form light-responsive compartments. Tethered with a light-responsive protein, enzymes of interest (EOIs) can be recruited by those compartments from cytosol within only a few seconds after a pulse of light induction and fully released in 15 minutes. Furthermore, we managed to enrich small molecular substrates simultaneously with enzymes in the compartments and achieved the acceleration of luciferin and catechol oxidation by 2.3 folds and 1.6 folds, respectively. We also developed a quantitative model to guide the further optimization of this de-mixed regulatory system. Our tool can thus be used to study the rapid redistribution of proteins, and reversibly regulate enzymatic reactions in E. coli.