Department of Computer Engineering, Gujrat Technological College, Ahmedabad, IndiaEmail address:[email protected] cite this article:Diptiben Ghelni. Deep Learning and Artificial Intelligence Framework to Improve the Cyber Security. American Journal of Artificial Intelligence . Vol. x, No. x, 2022, pp. x-x. Abstract: Deep learning derived from an artificial neural network (ANN), is one of the essential technologies for today’s intelligent cyber security systems or policies. The benefits and drawbacks of using artificial intelligence (AI) in cyber risk analytics to improve organizational resilience and better comprehend cyber risk. Multilayer perceptron, convolutional neural network, recurrent neural network or long short-term memory, self-organizing map, auto-encoder, restricted Boltzmann machine, deep belief networks, generative adversarial network, deep transfer learning, and deep reinforcement learning, as well as their ensembles and hybrid approaches, can be used to tackle the diverse cyber security issues intelligently. The backpropagation algorithm’s ultimate goal is to correctly maximize the network weights to translate the inputs to the intended outputs. During the training phase, several optimization approaches such as Stochastic Gradient Descent (SGD), Limited Memory BFGS (L-BFGS), and Adaptive Moment Estimation (Adam) are applied. These neural networks may be utilized to handle a variety of cybersecurity problems. MLP-based networks are used to construct an intrusion detection model, malware analysis, security threat analysis, identify malicious botnet traffic, and build trustworthy IoT systems. MLP is sensitive to feature scaling and requires tuning a variety of hyperparameters such as the number of hidden layers, neurons, and iterations, which might make solving a complicated security model computationally costly.Keywords: Cyber Security, Artificial Intelligence, Deep Learning, Internet of Things1. IntroductionIndustry 4.0, an IoT phrase coined in 1999, is built on the Internet of Things (IoT) technology, providing the first glimpse of what an IoT-based ecosystem would look like in the future. CPS refers to the interdisciplinary and complex characteristics of intelligent systems constructed and relies on the interplay of physical and computational components. CPS theory evolved from control theory and control systems engineering. It focuses on the connectivity of physical features and the utilization of sophisticated software entities to create new network and system capabilities. CPSs connect biological and engineering systems, bridging the cyber and physical worlds [1].On the other hand, IoT theory is based on computer science and Internet technologies, and it focuses primarily on the interconnection, interoperability, and integration of physical components on the Internet. This integration effort is expected to lead to advances such as IoT automation of CPSs as the IoT industry matures over the next decade. CPS systems and automated CPSs guide trained employees in production situations in real-time. In this context, we look at how such systems enable artificial intelligence (AI) breakthroughs in real-time processing, sensing, and actuation across these new systems and give cyber structure system analysis capabilities. As a result, we’ll concentrate on artificial intelligence, which is a notion that encompasses both the cyber-physical and social components of the hazards associated with new technology deployment [2].There are two research aims in this study. To begin, we provide an up-to-date summary of current and emerging cyber risk analytics breakthroughs. This incorporates current standards into a new risk analytics feedback loop by combining existing literature to generate shared core terminology and techniques. Second, by providing a novel understanding of cyber network risk and the role of AI in future CPS, we capture best practices and spark debate among practitioners and academia. Throughout the article, this architecture is explored and may be used as a best practice for designing and prototyping AI-enabled dynamic cyber risk analyses [3].2. Artificial intelligence, CPS, and predictive cyber risk analytics literature reviewThe IoT has been defined as a revolutionary technological augmentation that transforms the traditional living into a high-tech lifestyle in terms of data streams. CPSs and IoT generate massive amounts of data, necessitating powerful analytical tools for analysis. We almost likely need AI-assisted analytical tools to clean up the data’s noise and inconsistencies. On the other hand, CPS architectures cover a wide range of topics. These many notions must be integrated into a system [4].Furthermore, CPS mandates anti-counterfeiting and supply chain risk management to combat malicious supply chain components that have been altered from their original design to create disruption or perform illegal functions. Hyper-connectivity in the digital supply chain must be promoted in addition to design and process standardization. It is proposed that restricting source code access to critical and experienced employees can offer software assurance and application security and may be required to prevent the introduction of purposeful faults and vulnerabilities in CPSs. Forensics, prognostics, and recovery plans should be included in security measures for cyber-attack analysis and coordination with other CPSs and entities that detect external cyber-attack vectors [5]. An internal track and trace network procedure can help by recognizing or avoiding gaps in logistical security measures. To prevent the exploitation of CPS vulnerabilities discovered by reverse engineering assaults, a method for anti-malicious and anti-tamper system engineering is required. Taxonomic analysis was performed using the Smart literature review approach based on latent Dirichlet allocation. The resulting areas of concentration are organized into a taxonomy with acronyms to aid in the integration of artificial intelligence with the current CPS. Deep learning (DL) is a subset of machine learning (ML) and artificial intelligence (AI), and it is one of the primary technologies of the Fourth Industrial Revolution. It is derived from an artificial neural network (ANN) (Industry 4.0) [6]. ”Cyber security” and ”Deep learning” are becoming increasingly popular worldwide, as demonstrated in Figure 1.