Species distribution patterns are essential for the conservation of biodiversity. The aim of this study was to evaluate the influence of multiple ecological hypotheses on the spatial patterns of rodent species richness in China. First, we divided the geographic region of China into 80 × 80 km2 grid cells and mapped the distribution ranges of the 237 rodent species. Rodent taxa were separated into three response variables based on their distribution: (a) all species, (b) non-endemic species, and (c) endemic species. The predictors were divided into four factor sets: (a) energy-water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human factors, which were used to represent four different ecological hypotheses. We then performed multiple regression analysis (OLS), spatial autoregressive models (SAR), and variation partitioning analyses to determine the effects of predictors on the spatial patterns of rodent species. The Hengduan Mountains and surrounding mountains in southwest China showed the highest species richness and endemism. Habitat heterogeneity is the most important factor explaining the species richness distribution patterns across all species and non-endemic species. Endemic species richness patterns are most susceptible to seasonal changes in climate and least affected by human factors. The effects of energy and water on the three response variables showed consistent levels of importance.