Jennifer C. Stern

and 35 more

Field studies at terrestrial analogue sites represent an important contribution to the science of ocean worlds. The value of the science and technology investigations conducted at field analogue sites depends on the relevance of the analogue environment to the target ocean world. We accept that there are no perfect analogues for many of the unique environments represented by ocean worlds but suggest that a one-to-one matching of environmental characteristics and conditions is not crucial to the success or impact of the work. Instead, we must instead determine which processes and parameters are required to map directly to the target ocean world environment with high fidelity to address the science question or engineering challenge. Where there are discrepancies between the model and target environment, we must fully understand how those limitations impact the applicability of the study, and mitigate these where possible using alternative approaches. Here we present a two-step approach to 1) identify the most crucial processes and parameters associated with a given science question and 2) assess the fidelity of these processes and parameters at a proposed field site to those expected for the target ocean world. We demonstrate this approach in a test case evaluating three types of ocean world analogue environments with respect to a science question. Our proposed framework will not only enhance the scientific rigor of field research but also provide access to a broader range of field sites relevant to ocean worlds processes, enabling a greater diversity of ocean and geological science researchers.

Jacob Buffo

and 3 more

Jacob Buffo

and 5 more

Non-ice impurities within the ice shells of ocean worlds (e.g., Europa, Enceladus, Titan) are believed to play a fundamental role in their geophysics and habitability and may become a surface expression of subsurface ocean properties. Heterogeneous entrainment and distribution of impurities within planetary ice shells have been proposed as mechanisms that can drive ice shell overturn, generate diverse geological features, and facilitate ocean-surface material transport critical for maintaining a habitable subsurface ocean. However, current models of ice shell composition suggest that impurity rejection at the ice-ocean interface of thick contemporary ice shells will be exceptionally efficient, resulting in relatively pure, homogeneous ice. As such, additional mechanisms capable of facilitating enhanced and heterogeneous impurity entrainment are needed to reconcile the observed physicochemical diversity of planetary ice shells. Here we investigate the potential for hydrologic features within planetary ice shells (sills and basal fractures), and the unique freezing geometries they promote, to provide such a mechanism. By simulating the two-dimensional thermal and physicochemical evolution of these hydrological features as they solidify, we demonstrate that bottom-up solidification at sill floors and horizontal solidification at fracture walls generate distinct ice compositions and provide mechanisms for both enhanced and heterogeneous impurity entrainment. We compare our results with magmatic and metallurgic analogs that exhibit similar micro- and macroscale chemical zonation patterns during solidification. Our results suggest variations in ice-ocean/brine interface geometry could play a fundamental role in introducing compositional heterogeneities into planetary ice shells and cryoconcentrating impurities in (re)frozen hydrologic features.