Theodore Langhorst

and 5 more

Suspended sediment concentration, flux, and river discharge are essential indicators of river ecosystem health and reflect watershed-scale processes. Monitoring these variables is labor-intensive, leading to sparse and geographically biased observations and the development of models to fill in the observational gaps. These models generally use either climatological data or satellite images to estimate one of these variables. In this work, we present a novel deep learning model that can leverage multiple data sources with different temporal characteristics to produce continuous daily estimates of suspended sediment concentration (SSC), suspended sediment flux (SSF), and discharge. The model first encodes daily hydrological data from the ERA5-Land reanalysis using a Long Short-Term Memory network and water color data from Landsat satellites using a Multi-Layer Perceptron network, then merge these encoded data sources using a cross-attention decoder. We train and test the model on a large dataset of in-situ observations from 630 river sites over 43 years in the contiguous United States, covering a wide range of watersheds and conditions. We produce SSC, SSF, and discharge predictions with respective relative errors of 54\%, 73\%, and 28\%, and relative bias of -15\%, -19\%, and -3\%. We use our model to create a dataset of continuous daily SSC, SSF, and discharge for all large rivers in the contiguous United States. This new model architecture provides a valuable tool for monitoring river systems, addressing limitations of single-source models and offering a framework applicable to other Earth systems monitoring problems where integrating diverse data streams may be useful.

Nishani Moragoda

and 6 more

Sediment trapping behind dams is currently a major source of bias in large-scale hydro-geomorphic models, hindering robust analyses of anthropogenic influences on sediment fluxes in freshwater and coastal systems. This study focuses on developing a new reservoir trapping efficiency (Te) parameter to account for the impacts of dams in hydrological models. This goal was achieved by harnessing a novel remote sensing data product which offers high-resolution and spatially continuous maps of suspended sediment concentration across the Contiguous United States (CONUS). Validation of remote sensing-derived surface sediment fluxes against USGS depth-averaged sediment fluxes showed that this remote sensing dataset can be used to calculate Te with high accuracy (R2 = 0.98). Te calculated for 116 dams across the CONUS, using upstream and downstream sediment fluxes from their reservoirs, range from 0.3% to 98% with a mean of 43%. Contrary to the previous understanding that large reservoirs have larger Te and vice versa, these data reveal that large reservoirs can have a wide range of Te values. A suite of 21 explanatory variables were used to develop an empirical Te model using multiple regression. The strongest model predicts Te using five variables: dam height, incoming sediment flux, outgoing water discharge, reservoir length, and Aridity Index. A global model was also developed using explanatory variables obtained from a global dam database to conduct a global-scale analysis of Te. These CONUS- and global-scale Te models can be integrated into hydro-geomorphic models to more accurately predict river sediment transport by representing sediment trapping in reservoirs.