Conversion of the North American prairies to cropland remains a prominent threat to grassland bird populations. Yet, a few species nest in these vastly modified systems. The thick-billed longspur (Rhynchophanes mccownii) is an obligate grassland bird whose populations have declined 4% annually during the past 50 years. Thick-billed longspurs historically nested in recently disturbed or sparsely vegetated patches within native mixed-grass prairie, but observations of longspurs in crop fields during the breeding season suggest such fields also provide cues for habitat selection. Maladaptive selection for poor quality habitat may contribute to ongoing declines in longspur populations, but information on thick-billed longspur breeding ecology in crop fields is lacking. We hypothesized that crop fields may function as ecological traps; specifically, we expected that crop fields may provide cues for territory selection but frequent human disturbance and increased exposure to weather and predators would have negative consequences for reproduction. To address this hypothesis, we compared measures of habitat selection (settlement patterns and trends in abundance) and productivity (nest density, nest survival, and number of young fledged) between crop fields and native sites in northeastern Montana, USA. Settlement patterns were similar across site types and occupancy ranged from 0.52 ± 0.17SE to 0.99 ± 0.01 on April 7 and 30, respectively. Early season abundance differed by year and changes in abundance during the breeding season were associated with precipitation-driven vegetation conditions, rather than habitat type. Standardized nest density (0.19 ± 0.27SD nests/plot/hour), the number of young fledged per successful nest (2.9 ± 0.18SE), and nest survival (0.24 ± 0.03 SE; n=222 nests) were similar for crop and native sites. Collectively, the data did not support our hypothesis that crop fields are ecological traps: longspurs did not exhibit a clear preference for cropland and reproductive output was not significantly reduced. Our results indicate that crop fields provide alternative breeding habitat within a human-dominated landscape.