Please note: We are currently experiencing some performance issues across the site, and some pages may be slow to load. We are working on restoring normal service soon. Importing new articles from Word documents is also currently unavailable. We apologize for any inconvenience.

Min-Yang Chou

and 8 more

It is well-known that equatorial plasma bubbles (EPBs) are highly correlated to the post-sunset rise of the ionosphere on a climatological basis. However, when proceeding to the daily EPB development, what controls the day-to-day/longitudinal variability of EPBs remains a puzzle. In this study, we investigate the underlying physics responsible for the day-to-day/longitudinal variability of EPBs using the Sami3 is A Model of the Ionosphere (SAMI3) and the Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension (WACCM-X). Simulation results on October 20, 22, and 24, 2020 were presented. SAMI3/WACCM-X self-consistently generated midnight EPBs on October 20 and 24, displaying irregular and regular spatial distributions, respectively. However, EPBs are absent on October 22. We investigate the role of gravity waves on upwelling growth and EPB development and discuss how gravity waves contribute to the distributions of EPBs. Of particular significance is that we found the westward wind associated with solar terminator waves and gravity waves causes midnight vertical drift enhancement and collisional shear instability, which provides conditions favorable for upwelling growth and EPB development. The converging and diverging winds associated with solar terminator waves and midnight temperature maximum also affect the longitudinal distribution of EPBs. The absence of EPBs on October 22 is related to the weak upward drift induced by weak westward wind associated with solar terminator waves.

Alex T Chartier

and 7 more

Fabrizio Sassi

and 5 more

Whole atmosphere models that fully capture the propagation of wave dynamics from lower to upper atmosphere are believed sufficient to reproduce the type of short-term variability in the neutral upper atmosphere that produces observed variations in ionospheric parameters. However, recent studies suggest that upper atmospheric observations are needed to accurately represent short-term variability in both planetary-scale mass transport and tidal behavior crucial to representing the structure of the thermosphere and the wind-dynamo coupling in the ionosphere. To address this, we use atmospheric specifications from the prototype High-Altitude Navy Global Environmental Model (HA-NAVGEM) from the ground to 92 km to nudge the Whole Atmosphere Community Climate Model extended version (WACCM-X) coupled to the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) ionospheric model. The HA-NAVGEM data assimilation/forecast system is run in two configurations: a reference experiment for the time period December 2012-March 2013, where satellite-based middle atmospheric observations (SABER temperature retrievals; Aura MLS temperature, ozone, and water vapor retrievals; and SSMIS microwave radiances) are included between 20-90 km; and a perturbed experiment, during the same time period, in which the middle atmospheric observations are removed. The resulting nudged simulations using WACCM-X coupled to Navy-HITIDES are used to study the impact of upper atmospheric observations in reproducing the observed short-term variability in the thermosphere-ionosphere system, both in terms of the thermospheric structure and the ionospheric response via wind-dynamo coupling. The role of solar thermal and lunar gravitational tides is discussed, as well as the impact of observations on the weather of the day in the lower thermosphere.

Erin H Lay

and 8 more

A newly-released, novel ionospheric dataset of global gridded vertical total electron content (VTEC) is introduced in this paper. This VTEC dataset, provided by Los Alamos National Laboratory (LANL), is derived from very-high frequency (VHF; defined as 30-300 MHz) broadband radio-frequency (RF) measurements of lightning made by U.S. Department of Defense sensing systems on board Global Positioning System (GPS) satellites. This paper presents the new dataset (LANL VTEC), discusses the errors inherent in VHF TEC estimation due to ionospheric dispersion, and compares the LANL VTEC to two community standard VTEC gridded products: Jet Propulsion Laboratory’s Global Ionospheric Model (JPL GIM) and the CEDAR community’s Open Madrigal VTEC gridded measurements of L-band GNSS (global navigation satellite systems) TEC. We find that the LANL VTEC data has an offset of 3 TECU from CEDAR Madrigal GNSS VTEC, and a full-width-half-maximum (FWHM) of 6 TECU. In comparison, the offset between LANL VTEC and the JPL GIM model is -3 TECU, but with a FWHM of 5 TECU. We also compare to Jason-3 VTEC measurements over the ocean, finding an offset of less than 0.5 TECU and a FWHM of < 5 TECU. Because this technique uses a completely different methodology to determine TEC, the sources of errors are distinct from the typical ground-based GNSS L-band (GHz) TEC measurements. Also, because it is derived from RF lightning signals, this dataset provides measurements in regions that are not well covered by ground-based GPS measurements, such as over oceans and over central Africa.