Alice Laloue

and 8 more

In this paper, we compute a new hybrid mean sea surface (MSS) model by merging three recent models, CNES_CLS22, SCRIPPS_CLS22 and DTU21, and taking advantage of their respective features. The errors associated with these models were assessed using sea level anomalies for wavelengths ranging from 15 to 100km from Sentinel-3A (S3A), SWOT KaRIn during its calibration phase and ICESat-2 in the Arctic ice-covered regions. The absolute error associated with this new Hybrid23 MSS is estimated at 0.15 ± 0.04 cm² with S3A. The greatest improvements observed on S3A sea level anomalies are mainly located in coastal regions and along geodetic structures: on average, the error is reduced by 23% within 200km along the coast and by 35% in the Indonesian region compared with SCRIPPS_CLS22. Despite these improvements, the MSS error still impacts significantly sea level anomalies computed from altimetry: it explains 15% and 18% of the S3A and SWOT KaRIn respective global variance. It becomes predominant (> 30%) if we consider the shorter wavelengths ([15, 30km]). CNES_CLS15, older, explains up to 88% of the variance of SWOT KaRIn at these wavelengths. MSS errors have become a major limiting factor to the accuracy of sea level anomalies, and hybridization even adds sub-mesoscale errors. SCRIPPS_CLS22 and DTU21 also remain better in certain regions of the North Atlantic above 60°N and in Arctic coastal areas. Finally, many efforts are still required to develop the MSS to a new level of precision, which we could soon achieve with SWOT KaRIn during the scientific phase.

David Cotton

and 29 more

Introduction HYDROCOASTAL is a two year project funded by ESA, with the objective to maximise exploitation of SAR and SARin altimeter measurements in the coastal zone and inland waters, by evaluating and implementing new approaches to process SAR and SARin data from CryoSat-2, and SAR altimeter data from Sentinel-3A and Sentinel-3B. Optical data from Sentinel-2 MSI and Sentinel-3 OLCI instruments will also be used in generating River Discharge products. New SAR and SARin processing algorithms for the coastal zone and inland waters will be developed and implemented and evaluated through an initial Test Data Set for selected regions. From the results of this evaluation a processing scheme will be implemented to generate global coastal zone and river discharge data sets. A series of case studies will assess these products in terms of their scientific impacts. All the produced data sets will be available on request to external researchers, and full descriptions of the processing algorithms will be provided Objectives The scientific objectives of HYDROCOASTAL are to enhance our understanding of interactions between the inland water and coastal zone, between the coastal zone and the open ocean, and the small scale processes that govern these interactions. Also the project aims to improve our capability to characterize the variation at different time scales of inland water storage, exchanges with the ocean and the impact on regional sea-level changes The technical objectives are to develop and evaluate new SAR and SARin altimetry processing techniques in support of the scientific objectives, including stack processing, and filtering, and retracking. Also an improved Wet Troposphere Correction will be developed and evaluated. Presentation The presentation will describe the different SAR altimeter processing algorithms that are being evaluated in the first phase of the project, and present results from the evaluation of the initial test data set. It will focus particularly on the performance of the new algorithms over inland water.

David Cotton

and 26 more

Introduction HYDROCOASTAL is a two year project funded by ESA, with the objective to maximise exploitation of SAR and SARin altimeter measurements in the coastal zone and inland waters, by evaluating and implementing new approaches to process SAR and SARin data from CryoSat-2, and SAR altimeter data from Sentinel-3A and Sentinel-3B. Optical data from Sentinel-2 MSI and Sentinel-3 OLCI instruments will also be used in generating River Discharge products. New SAR and SARin processing algorithms for the coastal zone and inland waters will be developed and implemented and evaluated through an initial Test Data Set for selected regions. From the results of this evaluation a processing scheme will be implemented to generate global coastal zone and river discharge data sets. A series of case studies will assess these products in terms of their scientific impacts. All the produced data sets will be available on request to external researchers, and full descriptions of the processing algorithms will be provided Objectives The scientific objectives of HYDROCOASTAL are to enhance our understanding of interactions between the inland water and coastal zone, between the coastal zone and the open ocean, and the small scale processes that govern these interactions. Also the project aims to improve our capability to characterize the variation at different time scales of inland water storage, exchanges with the ocean and the impact on regional sea-level changes The technical objectives are to develop and evaluate new SAR and SARin altimetry processing techniques in support of the scientific objectives, including stack processing, and filtering, and retracking. Also an improved Wet Troposphere Correction will be developed and evaluated. Presentation The presentation will describe the different SAR altimeter processing algorithms that are being evaluated in the first phase of the project, and present results from the evaluation of the initial test data set focusing on performance at the coast. It will also present the results of a study assessing regional tidal models.