Kyle Robert Murphy

and 16 more

Waves which couple to energetic electrons are particularly important in space weather, as they drive rapid changes in the topology and intensity of Earth’s outer radiation belt during geomagnetic storms. This includes Ultra Low Frequency (ULF) waves that interact with electrons via radial diffusion which can lead to electron dropouts and rapid acceleration and inward transport of electrons during. In radiation belt simulations, the strength of this interaction is specified by ULF wave radial diffusion coefficients. In this paper we detail the development of new models of electric and magnetic radial diffusion coefficients derived from in-situ observations of the azimuthal electric field and compressional magnetic field. The new models use L* as it accounts for adiabatic changes due to the dynamic magnetic field coupled with an optimized set of four components of solar wind and geomagnetic activity, Bz, V, Pdyn and Sym-H, as independent variables (inputs). These independent variables are known drivers of ULF waves and offer the ability to calculate diffusion coefficients at a higher cadence then existing models based on Kp. We investigate the performance of the new models by characterizing the model residuals as a function of each independent variable and by comparing to existing radial diffusion models during a quiet geomagnetic period and through a geomagnetic storm. We find that the models developed here perform well under varying levels of activity and have a larger slope or steeper gradient as a function of L* as compared to existing models (higher radial diffusion at higher L* values).

Zijin Zhang

and 16 more

We investigate the dynamics of relativistic electrons in the Earth’s outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave-driven acceleration of ~100-300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on April 17, 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC- and chorus wave-driven electron precipitation in the outer radiation belt, trapped 0.1-1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi-linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100-300 keV electrons by plasma sheet injections together with chorus wave-driven acceleration can overcome the rate of chorus and EMIC wave-driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave-particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes.

Luisa Capannolo

and 7 more

Energetic electron precipitation (EEP) from the radiation belts into Earth’s atmosphere leads to several profound effects (e.g., enhancement of ionospheric conductivity, possible acceleration of ozone destruction processes). An accurate quantification of the energy input and ionization due to EEP is still lacking due to instrument limitations of low-Earth-orbit satellites capable of detecting EEP. The deployment of the ELFIN (Electron Losses and Fields InvestigatioN) CubeSats marks a new era of observations of EEP with an improved pitch-angle (0°–180°) and energy (50 keV–6 MeV) resolution. Here, we focus on the EEP recorded by ELFIN coincident with electromagnetic ion cyclotron (EMIC) waves, which play a major role in radiation belt electron losses. The EMIC-driven EEP (~200 keV – ~2 MeV) exhibits a pitch-angle distribution (PAD) that flattens with increasing energy, indicating more efficient high-energy precipitation. Leveraging the combination of unique electron measurements from ELFIN and a comprehensive ionization model known as Boulder Electron Radiation to Ionization (BERI), we quantify the energy input of EMIC-driven precipitation (on average, ~3.3x10-2 erg/cm2/s), identify its location (any longitude, 50°–70° latitude), and provide the expected range of ion-electron production rate (on average, 100–200 pairs/cm3/s), peaking in the mesosphere – a region often overlooked. Our findings are crucial for improving our understanding of the magnetosphere-ionosphere-atmosphere system as they accurately specify the contribution of EMIC-driven EEP, which serves as a crucial input to state-of-the-art atmospheric models (e.g., WACCM) to quantify the accurate impact of EMIC waves on both the atmospheric chemistry and dynamics.

Ethan Tsai

and 6 more

Energetic electron losses by pitch-angle scattering and precipitation to the atmosphere from the radiation belts are controlled, to a great extent, by resonant wave particle interactions with whistler-mode waves. The efficacy of such precipitation is primarily controlled by wave intensity, although its relative importance, compared to other wave and plasma parameters, remains unclear. Precipitation spectra from the low-altitude, polar-orbiting ELFIN mission have previously been demonstrated to be consistent with energetic precipitation modeling derived from empirical models of field-aligned wave power across a wide-swath of local-time sectors. However, such modeling could not explain the intense, relativistic electron precipitation observed on the nightside. Therefore, this study aims to additionally consider the contributions of three modifications – wave obliquity, frequency spectrum, and local plasma density – to explain this discrepancy on the nightside. By incorporating these effects into both test particle simulations and quasi-linear diffusion modeling, we find that realistic implementations of each individual modification result in only slight changes to the electron precipitation spectrum. However, these modifications, when combined, enable more accurate modeling of ELFIN-observed spectra. In particular, a significant reduction in plasma density enables lower frequency waves, oblique, or even quasi-field aligned waves to resonate with near $\sim1$ MeV electrons closer to the equator. We demonstrate that the levels of modification required to accurately reproduce the nightside spectra of whistler-mode wave-driven relativistic electron precipitation match empirical expectations, and should therefore be included in future radiation belt modeling.