Wandi Yu

and 10 more

The Hunga Tonga Hunga-Ha’apai (HTHH) volcanic eruption on 15 January 2022 injected water vapor and SO2 into the stratosphere. Several months after the eruption, significantly stronger westerlies, and a weaker Brewer-Dobson circulation developed in the stratosphere of the Southern Hemisphere and were accompanied by unprecedented temperature anomalies in the stratosphere and mesosphere. In August 2022 the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument observed record-breaking temperature anomalies in the stratosphere and mesosphere that alternate signs with altitude. Ensemble simulations carried out with the Whole Atmosphere Community Climate Model (WACCM6) indicate that the strengthening of the stratospheric westerlies explains the mesospheric temperature changes. The stronger westerlies cause stronger westward gravity wave drag in the mesosphere, accelerating the mesospheric mean meridional circulation. The stronger mesospheric circulation, in turn, plays a dominant role in driving the changes in mesospheric temperatures. This study highlights the impact of large volcanic eruptions on middle atmospheric dynamics and provides insight into their long-term effects in the mesosphere. On the other hand, we could not discern a clear mechanism for the observed changes in stratospheric circulation. In fact, an examination of the WACCM ensemble reveals that not every member reproduces the large changes observed by SABER. We conclude that there is a stochastic component to the stratospheric response to the HTHH eruption.

William J. Randel

and 2 more

Stratospheric transit time distributions (age-of-air spectra) are estimated using satellite water vapor (H2O) measurements from the Microwave Limb Sounder over 2004-2021 assuming stationary transport. Latitude-altitude dependent spectra are derived from correlations of interannual H2O anomalies with respect to the tropical tropopause source region, fitted with an inverse Gaussian distribution function. The reconstructions accurately capture interannual H2O variability in the ‘tropical pipe’ and global lower stratosphere, regions of relatively fast transport (~1-2 years) in the Brewer-Dobson circulation. The calculations provide novel observational estimates of the corresponding ‘short transit-time’ part of the age spectrum in these regions, including the mode. However, the H2O results do not constrain the longer transit-time ‘tail’ of the age spectra, and the mean age of air and spectral widths are systematically underestimated compared to other data. We compare observational results with parallel calculations applied to the WACCM chemistry-climate model and the CLaMS chemistry-transport model, and additionally evaluate the method in CLaMS by comparing with spectra from idealized pulse tracers. Because the age spectra accurately capture H2O interannual variations originating from the tropical tropopause, they can be used to identify ‘other’ sources of variability in the lower stratosphere, and we use these calculations to quantify H2O anomalies in the Southern Hemisphere linked to the Australian New Years fires in early 2020 and the Hunga volcanic eruption in 2022.

Sean M. Davis

and 15 more

Since June 2017, the Stratospheric Aerosol and Gas Experiment III instrument on the International Space Station (SAGE III/ISS) has been providing vertical profiles of upper tropospheric to stratospheric water vapor (WV) retrieved from solar occultation transmission measurements. The goal of this paper is to evaluate the publicly released SAGE III/ISS beta version 5.1 WV retrieval through intercomparison with independent satellite- and balloon-based measurements, and to present recommendations for SAGE III/ISS data quality screening criteria. Overall, we find that SAGE III/ISS provides high quality water vapor measurements. Low quality profiles are predominately due to retrieval instabilities in the upper stratosphere that cause step-like changes in the profile, and aerosol/cloud-related interferences (below ~20 km). Above 35 km, the retrieved uncertainty and noise in the data rapidly grow with increasing altitude due to relatively low extinction signal from water vapor. Below the tropopause, retrieved uncertainty increases with decreasing altitude due to enhanced molecular scattering and aerosol extinction. After screening low-quality data using the procedures described herein, SAGE III/ISS WV is shown to be in good agreement with independent satellite and balloon-based measurements. From 20 – 40 km, SAGE III/ISS WV v5.1 data exhibit a bias of 0.0 to -0.5 ppmv (~10 %) relative to the independent data, depending on the instrument and altitude. Despite its status as a beta version, the level of SAGE III/ISS WV agreement with independent data is similar to previous SAGE instruments, and therefore the data are suitable for scientific studies of stratospheric water vapor.