Sandeep Sakhale

and 5 more

Dry direct-seeded rice (dry-DSR) is typically sown deeply to circumvent the need for irrigation, and thus seedling emergence is a crucial trait affecting plant stand and yield. To breed elite cultivars that use less water and are climate-resilient, understanding the genomic regions and underlying genes that confer emergence for deeply sown dry-DSR would be highly advantageous. A combined diversity panel of 470 rice accessions (RDP1 plus aus subset of 3K RGP) was evaluated with 2.9 million single nucleotide polymorphisms (SNPs) to identify associations with dry-DSR traits in the field and component traits in a controlled-environment experiment. Using genome-wide association study (GWAS) analyses, we identified 18 unique QTLs on chromosomes 1, 2, 4, 5, 6, 7, 9, 10, and 11, explaining phenotypic variance ranging from 2.6 to 17.8%. Three QTLs, namely, qSOE-1.1, qEMERG-AUS-1.2, and qEMERG-AUS-7.1, were co-located with previously reported QTLs for mesocotyl length. Among the identified QTLs, half were associated with the emergence in aus, and six were unique to the aus genetic group. Based on functional annotation, we identified eleven compelling candidate genes, which primarily regulated phytohormone pathways such as cytokinin, auxin, gibberellic acid, and jasmonic acid. Prior studies indicated that these phytohormones play a critical role in mesocotyl length under deep-sowing. This study provides new insight into the importance of aus and indica as desirable genetic resources to mine favorable alleles for deep-sowing tolerance in rice. The candidate genes and marker-tagged desirable alleles identified in this study should benefit rice breeding programs directly.

Daniel Morris

and 8 more

Plant growth and development is impacted by the ability to capture resources including sunlight, determined in part by the arrangement of plant parts throughout the canopy. This is a very complex trait to describe, but has a major impact on downstream traits such as biomass or grain yield per acre. Though some is known about genetic factors contributing to leaf angle, maturity, and leaf size and number, these discrete traits do not encompass the structural complexity of the canopy. In addition, modeling and prediction for plant developmental traits using genomics or phenomics are usually conducted separately. We have developed proof-of-concept models that incorporate spatio-temporal factors from drone-acquired LiDAR features in a maize diversity panel to predict plant growth and development over time to improve our understanding of the biology of canopy formation and development. Briefly, voxel models for probability of beam penetration into the foliage were generated from 3D LiDAR scans collected at seven dates throughout crop canopy development. From the same plots, key architectural features of the maize canopy were measured by hand: stand count; plant, tassel, and flag leaf height; anthesis and silking dates; ear leaf, total leaf, and largest leaf number; and largest leaf length and width. We develop a self-supervised autoencoding neural network architecture that separately encodes plant temporal growth patterns for individual genotypes and plant spatial distributions for each plot. Then, leveraging the resulting latent space encoding of the LiDAR scans, we train and demonstrate accurate prediction of hand-measured crop traits.