Peter Regier

and 7 more

Authors: Peter Regier1, Kyongho Son2, Xingyuan Chen2, Yilin Fang2, Peishi Jiang2, Micah Taylor2, Wilfred M Wollheim3, James Stegen2Affiliations 1Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, United States2Pacific Northwest National Laboratory, Richland, WA, United States3University of New Hampshire, Durham, NH, United StatesAbstract:Hyporheic zones regulate biogeochemical processes in streams and rivers, but high spatiotemporal heterogeneity makes it difficult to predict how these processes scale from individual reaches to river basins. Recent work applying allometric scaling (i.e., power-law relationships between size and function) to river networks provides a new paradigm for understanding cumulative hyporheic biogeochemical processes. We used previously published model predictions of reach-scale hyporheic aerobic respiration to explore patterns in allometric scaling across two climatically divergent basins with differing characteristics in the Pacific Northwest, United States. In the model, hydrologic exchange fluxes (HEFs) regulate hyporheic respiration so we examined how HEFs might influence allometric scaling of respiration. We found consistent scaling behaviors where HEFs were either very low or very high, but differences between basins when HEFs were moderate. Our findings provide initial model-generated hypotheses for factors influencing allometric scaling of hyporheic respiration. These hypotheses can be used to optimize new data generation efforts aimed at developing predictive understanding of allometries that can, in turn, be used to scale biogeochemical dynamics across watersheds. 

Kyongho Son

and 4 more

Denitrification in the hyporheic zone (HZ) of river corridors is crucial to removing excess nitrogen in rivers from anthropogenic activities. However, previous modeling studies of the effectiveness of river corridors in removing excess nitrogen via denitrification were often limited to the reach-scale and low-order stream watersheds. We developed a basin-scale river corridor model for the Columbia River Basin with random forest models to identify the dominant factors associated with the spatial variation of HZ denitrification. Our modeling results suggest that the combined effects of hydrologic variability in reaches and substrate availability influenced by land use are associated with the spatial variability of modeled HZ denitrification at the basin scale. Hyporheic exchange flux can explain most of spatial variation of denitrification amounts in reaches of different sizes, while among the reaches affected by different land uses, the combination of hyporheic exchange flux and stream dissolved organic carbon (DOC) concentration can explain the denitrification differences. Also, we can generalize that the most influential watershed and channel variables controlling denitrification variation are channel morphology parameters (median grain size (D50), stream slope), climate (annual precipitation and evapotranspiration), and stream DOC-related parameters (percent of shrub area). The modeling framework in our study can serve as a valuable tool to identify the limiting factors in removing excess nitrogen pollution in large river basins where direct measurement is often infeasible.