Parameterizations of algal photosynthesis commonly employed in global biogeochemical simulations generally fail to capture the observed vertical structure of primary production. Here we examined the consequences of decoupling photosynthesis (carbon fixation) and biosynthesis (biomass building) with accumulation or exudation of excess photosynthate under energy rich conditions in both regional and global models. The results show that the decoupling of these two processes improved the simulated vertical profile of primary production, increased modeled global primary production up to ~35%, improved simulated meridional patterns of particulate C:N:P and increased modeled surface pool of semi-labile DOC.