Fanni Dora Kelemen

and 9 more

The total meridional heat transport (MHT) is relatively stable across different climates. Nevertheless, the strength of individual processes contributing to the total transport are not stable. Here we investigate the MHT and its main components especially in the atmosphere, in five coupled climate model simulations from the Deep-Time Model Intercomparison Project (DeepMIP). These simulations target the Early Eocene Climatic Optimum (EECO), a geological time period with high CO2 concentrations, analogous to the upper range of end-of-century CO2 projections. Preindustrial and early Eocene simulations at a range of CO2 levels (1x, 3x and 6x preindustrial values) are used to quantify the MHT changes in response to both CO2 and non-CO2 related forcings. We found that atmospheric poleward heat transport increases with CO2, while the effect of non-CO2 boundary conditions (e.g., paleogeography, land ice, vegetation) is causing more poleward atmospheric heat transport on the Northern and less on the Southern Hemisphere. The changes in paleogeography increase the heat transport via transient eddies at the mid-latitudes in the Eocene. The Hadley cells have an asymmetric response to both the CO2 and non-CO2 constraints. The poleward latent heat transport of monsoon systems increases with rising CO2 concentrations, but this effect is offset by the Eocene topography. Our results show that the changes in the monsoon systems’ latent heat transport is a robust feature of CO2 warming, which is in line with the currently observed precipitation increase of present day monsoon systems.

Charles Williams

and 19 more

The early Eocene (~56-48 million years ago) is characterised by high CO2 estimates (1200-2500 ppmv) and elevated global temperatures (~10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state-of-the-art climate models in the Deep-time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre-industrial simulations and modern observations suggests that model biases are model- and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre-industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa, whereas it is likely that changes in vegetation in the models are responsible for the simulated region of drying over equatorial Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low-level circulation is replaced by increased south-westerly flow at high CO2 levels. Lastly, a model-data comparison using newly-compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.