You need to sign in or sign up before continuing. dismiss

Rohit Mathur

and 7 more

Several locations across the United States in non-compliance with the national standard for ground-level ozone (O3) are thought to have sizeable influences from distant extra-regional emission sources or natural stratospheric O3, which complicates design of local emission control measures. To quantify the amount of long-range transported O3 (LRT O3), its origin, and change over time, we conduct and analyze detailed sensitivity calculations characterizing the response of O3 to emissions from different source regions across the Northern Hemisphere in conjunction with multi-decadal simulations of tropospheric O3 distributions and changes. Model calculations show that the amount of O3 at any location attributable to sources outside North America varies both spatially and seasonally. On a seasonal-mean basis, during 1990-2010, LRT O3 attributable to international sources steadily increased by 0.06-0.2 ppb yr-1 at locations across the United States and arose from superposition of unequal and contrasting trends in individual source-region contributions, which help inform attribution of the trend evident in O3 measurements. Contributions of emissions from Europe steadily declined through 2010, while those from Asian emissions increased and remained dominant. Steadily rising NOx emissions from international shipping resulted in increasing contributions to LRT O3, comparable to those from Asian emissions in recent years. Central American emissions contribute a significant fraction of LRT O3 in southwestern United States. In addition to the LRT O3 attributable to emissions outside of North America, background O3 across the continental United States is comprised of a sizeable and spatially variable fraction that is of stratospheric origin (29-78%).