In the upper ocean, the surface mixed layer is rich in submesoscale flows characterized by large vertical velocities and significant vertical transport. In addition, the vertical flux is also modulated by a variety of smaller-scale features, with dynamics approaching three-dimensional turbulence. Surface gravity waves significantly influence the submesoscale regime, particularly through the formation of Langmuir circulations, which are a direct outcome of wave-current interactions. However, current models often parameterize these effects, leaving their precise impact on vertical transport unclear. This study addresses this gap by investigating the roles of wave-modulated submesoscale structures, parameterized turbulent mixing, and Langmuir circulations on Lagrangian particle movement, utilizing high-resolution ($\Delta x \lessapprox$ $100$ m) realistic ocean simulations able to resolve this smaller-scale dynamics. Our high resolution ($\Delta x = 30$ m) simulations reveal that Langmuir circulations dominate the vertical transport with their strong vertical velocities. This wave-induced vertical fluxes significantly affect Lagrangian particle movement, increasing their vertical displacement and Lagrangian relative horizontal diffusivity. These effects occur alongside downwelling from submesoscale features, suggesting that Langmuir circulations are integral in transporting biological and ecological materials vertically and horizontally in the ocean, while Stokes drift, another product of the wave-current interactions, have a lesser role in the particle stirring in this open-ocean simulation. This study also suggests that sub-grid-scale parameterization via diffusion may be limited when trying to reproduce the effects of ephemeral and heterogeneous small scale flows included in high-resolution Eulerian flows.

Anh Le-Duy Pham

and 7 more

Release of iron (Fe) from continental shelves is a major source of this limiting nutrient for phytoplankton in the open ocean, including productive Eastern Boundary Upwelling Systems. The mechanisms governing the transport and fate of Fe along continental margins remain poorly understood, reflecting interaction of physical and biogeochemical processes that are crudely represented by global ocean biogeochemical models. Here, we use a submesoscale-permitting physical-biogeochemical model to investigate processes governing the delivery of shelf-derived Fe to the open ocean along the northern U.S. West Coast. We find that a significant fraction (∼20%) of the Fe released by sediments on the shelf is transported offshore, fertilizing the broader Northeast Pacific Ocean. This transport is governed by two main pathways that reflect interaction between the wind-driven ocean circulation and Fe release by low-oxygen sediments: the first in the surface boundary layer during upwelling events; the second in the bottom boundary layer, associated with pervasive interactions of the poleward California Undercurrent with bottom topography. In the water column interior, transient and standing eddies strengthen offshore transport, counteracting the onshore pull of the mean upwelling circulation. Several hot-spots of intense Fe delivery to the open ocean are maintained by standing meanders in the mean current and enhanced by transient eddies and seasonal oxygen depletion. Our results highlight the importance of fine-scale dynamics for the transport of Fe and shelf-derived elements from continental margins to the open ocean, and the need to improve representation of these processes in biogeochemical models used for climate studies.

Jian Zhou

and 5 more

High-resolution simulations by the Regional Ocean Modeling System (ROMS) were used to investigate the dispersal of the San Francisco Bay (SFB) plume over the northern-central California continental shelf during the period of 2011 to 2012. The modeled bulk dynamics of surface currents and state variables showed many similarities to corresponding observations. After entering the Pacific Ocean through the Golden Gate, the SFB plume is dispersed across the shelf via three pathways: (i) along the southern coast towards Monterey Bay, (ii) along the northern coast towards Point Arena, and (iii) an offshore pathway restricted within the shelf break. On the two-year mean timescale, the along-shore zone of impact of the northward-dispersed plume is about 1.5 times longer than that of the southern branch. Due to the opposite surface Ekman transports induced by the northerly or southerly winds, the southern plume branch occupies a broader cross-shore extent, roughly twice as wide as the northern branch which extends roughly two times deeper due to coastal downwelling. Besides these mean characteristics, the SFB plume dispersal also shows considerable temporal variability in response to various forcings, with wind and surface-current forcing most strongly related to the dispersing direction. Applying constituent-oriented age theory, we determine that it can be as long as 50 days since the SFB plume was last in contact with SFB before being flushed away from the Gulf of the Farallones. This study sheds light on the transport and fate of SFB plume and its impact zone with implications for California’s marine ecosystems.