Projections for future air mobility envisage intensely utilised airspace that does not simply scale up from existing systems with centralised air traffic control. This paper considers the implementation and test of a software and hardware framework for decentralised control of aerial vehicles within intensely used airspace. Up to 10 rotary wing vehicles of maximum all up mass of 1 kg are flown in an outdoor volume with length scale of 100 m with GPS and WiFi connectivity. Flight control is implemented using a Pixhawk 4 flight controller running the PX4 firmware with guidance algorithms run on a separate onboard companion computer. Deconfliction is implemented using a simple elastic repulsion model with a guidance update rate of 10 Hz. Traffic structures are constructed from a path of directed waypoints and associated cross sectional geometry. Junctions are implemented when two paths converge into one or when one path diverges into two. Agents engage with structures through execution of flow, merge and swirl velocity rules. Calibration experiments showed that the worst case latency in agents sharing position information was of the order of 0 .5 s made up from delays due to finite guidance update rate, WiFi processing and centralised message processing. A choice of vehicle cruise speed of 2 m/s and conflict radius of 2 .5 m provided an acceptable compromise between experiment time efficiency (speed) and spatial efficiency (resolution) within the test volume. Results from recirculating junction experiments show that peak deconfliction activity occurs at the junction node, however biased distribution of agents within a corridor means the peak intensity is pushed ahead of the node. Use of meshed helical junction structures significantly reduces the intensity of conflict at the expense of reduced junction time efficiency.