INTRODUCTION Traditional methods of road safety analysis rely on direct road accident observations, data sources which are rare and expensive to collect and which also carry the social cost of placing citizens at risk of unknown danger. Surrogate safety analysis is a growing discipline in the field of road safety analysis that promises a more pro-active approach to road safety diagnosis. This methodology uses non-crash traffic events and measures thereof as predictors of collision probability and severity as they are significantly more frequent, cheaper to collect, and have no social impact. Time-to-collision (TTC) is an example of an indicator that indicates collision probability primarily: the smaller the TTC, the less likely drivers have time to perceive and react before a collision, and thus the higher the probability of a collision outcome. Relative positions and velocities between road users or between a user and obstacles can be characterised by a collision course and the corresponding TTC. Meanwhile, driving speed (absolute speed) is an example of an indicator that measures primarily collision severity. The higher the travelling speed, the more stored kinetic energy is dissipated during a collision impact . Similarly, large speed differentials between road users or with stationary obstacles may also contribute to collision severity, though the TTC depends on relative distance as well. Driving speed is used extensively in stopping-sight distance models , some even suggesting that drivers modulate their emergency braking in response to travel speed . Others content that there is little empirical evidence of a relationship between speed and collision probability . Many surrogate safety methods have been used in the literature, especially recently with the renewal of automated data collection methods, but consistency in the definitions of traffic events and indicators, in their interpretation, and in the transferability of results is still lacking. While a wide diversity of models demonstrates that research in the field is thriving, there remains a need of comparison of the methods and even a methodology for comparison in order to make surrogate safety practical for practitioners. For example, time-to-collision measures collision course events, but the definition of a collision course lacks rigour in the literature. Also lacking is some systematic validation of the different techniques. Some early attempts have been made with the Swedish Traffic Conflict Technique using trained observers, though more recent attempts across different methodologies, preferably automated and objectively-defined measures, are still needed. Ideally, this would be done with respect to crash data and crash-based safety diagnosis. The second best method is to compare the characteristics of all the methods and their results on the same data set, but public benchmark data is also very limited despite recent efforts . The objectives of this paper are to review the definition and interpretation of one of the most ubiquitous and least context-sensitive surrogate safety indicators, namely time-to-collision, for surrogate safety analysis using i) consistent, recent, and, most importantly, objective definitions of surrogate safety indicators, ii) a very large data set across numerous sites, and iii) the latest developments in automated analysis. This work examines the use of various motion prediction methods, constant velocity, normal adaptation and observed motion patterns, for the TTC safety indicator (for its properties of transferability), and space and time aggregation methods for continuous surrogate safety indicators. This represents an application of surrogate safety analysis to one of the largest data sets to date.