In Internet of Things (IoT) applications, among various authentication techniques, keystroke authentication methods based on a user’s touch behavior have received increasing attention, due to their unique benefits. In this paper, we present a technique for obtaining high user authentication accuracy by utilizing a user’s touch time and force information, which are obtained from an assembled piezoelectric touch panel. After combining artificial neural networks with the user’s touch features, an equal error rate (EER) of 1.09% is achieved, and hence advancing the development of security techniques in the field of IoT.