This letter proposes a polarization microwave correlation imaging method based on the orthogonal complement space. It utilizes the orthogonal complement space of the HV antenna radiation field to cross-multiply the echo information, enabling simultaneous correlation imaging and instantaneous polarization measurement of the target. Currently, there is a significant research gap in polarization-driven microwave correlation imaging methods, and the existing relevant studies focus on enhancing the randomness of the radiation field using polarized antenna elements, without incorporating polarization information into the imaging process. Through simulation analysis, this method further improves the quality of microwave correlation imaging and its ability to resist interference. Moreover, under low time-frequency products, the peak sidelobe level (PSL) and isolation (I) of this method are approximately 3.5 dB and 12.5 dB higher, respectively, than those of traditional instantaneous polarization measurement (TIPM)methods.