Heart disease has been the leading cause of mortality globally. The necessity for quick access to trustworthy, dependable, and practical processes for early diagnosis and disease management pertains to numerous risk factors for heart disease. In the current global environment, detecting heart disease through early-onset manifestations is challenging. This has the potential to be fatal if not stopped in time. In isolated, semiurban, or rural locations without access to heart specialists, accurate risk prediction and analysis may be essential for the early detection of cardiac issues. Artificial Intelligence (AI) and robotics are currently used in medical research. This addresses the urgent need for better ways to find, diagnose, and treat heart disease. To close the gap between theory and reality, we offer a dataset on cardiovascular disease that has been carefully put together. The variables in the dataset are age, gender, subtypes, symptoms, risk factors, and result variables that can be either 1 or 0. The