The performance of industrial strains has gradually improved with the rapid development of synthetic biotechnology. The production efficiency of traditional batch and fed-batch culture is limited and product quality varies since both are dynamic processes, whereas multi-stage continuous culture can maximise the production efficiency of specific fermentation processes and achieve consistent product quality. However, each single-stage fermentation under multi-stage continuous fermentation requires accurate steady-state control, and a model with adequate accuracy is required for designing and controlling a multi-stage continuous fermentation process. At present, there are few reports on kinetic models for the control of multi-stage continuous fermentation. In this work, we constructed a hybrid model for Saccharomyces cerevisiae multi-stage continuous culture, taking both oxygen limitation and Crabtree effect. The accuracy of the model was ~ 80%, advantages and limitations of the model are discussed and potential improvement strategy is proposed.