1. Tree growth–survival relationships link two demographic processes that dictate the com-position, structure and functioning of forest ecosystems. While these relationships have been shown to vary intra-specifically, it remains unclear how this reflects environmental variation and disturbance. We examined the influence of a 700-m elevation gradient and an Mw = 6.7 earthquake in 1994 on intra-specific variability in growth–survival relationships. We expected that survival models that incorporated recent growth would be better sup-ported than those using other factors known to influence tree survival. 2. We used a permanent plot network that representatively sampled a monodominant Nothofagus forest in New Zealand’s Southern Alps in 1974 and that was remeasured seven times through to 2009. The relationships were assessed using pre-earthquake growth and survival, pre-earthquake growth and post-earthquake survival (0–5 years post-earthquake), and post-earthquake growth and survival (5+ years post-earthquake). Sur-vival was related to growth of 4504 trees on 216 plots using Bayesian modelling. We hy-pothesised there would be a positive, logistic relationship between growth and survival. 3. Pre-earthquake, we found a positive, logarithmic growth–survival relationship at all eleva-tions. At higher elevations, trees grew more slowly but had higher survival, supporting our hypothesised demographic trade-off with elevation. As we expected, the earthquake al-tered the pre-earthquake growth–survival relationships and 0–5 years post-earthquake survival held little relationship with growth. Less expected was a strong, logarithmic growth–survival relationship that developed 5+ years post-earthquake because of en-hanced survival of fast-growing trees yet low survival of slow-growing trees. 4. Synthesis. Our findings demonstrate there can be trends in growth–survival relationships along an elevation gradient. If we assume a gradual climate warming is the equivalent of a forest stand shifting to a lower elevation, then data from our pre-earthquake period sug-gests that tree growth–survival relationships at any elevation could adjust to faster growth and lower survival. We also show how these novel growth–survival relationships could be altered by periodic disturbance.